Download AWS Certified Machine Learning Engineer - Associate.MLA-C01.ExamTopics.2026-01-20.30q.vcex

Vendor: Amazon
Exam Code: MLA-C01
Exam Name: AWS Certified Machine Learning Engineer - Associate
Date: Jan 20, 2026
File Size: 970 KB

How to open VCEX files?

Files with VCEX extension can be opened by ProfExam Simulator.

Demo Questions

Question 1
An ML engineer needs to implement a solution to host a trained ML model. The rate of requests to the model will be inconsistent throughout the day.
The ML engineer needs a scalable solution that minimizes costs when the model is not in use. The solution also must maintain the model's capacity to respond to requests during times of peak usage.
Which solution will meet these requirements?
  1. Create AWS Lambda functions that have fixed concurrency to host the model. Configure the Lambda functions to automatically scale based on the number of requests to the model.
  2. Deploy the model on an Amazon Elastic Container Service (Amazon ECS) cluster that uses AWS Fargate. Set a static number of tasks to handle requests during times of peak usage.
  3. Deploy the model to an Amazon SageMaker endpoint. Deploy multiple copies of the model to the endpoint. Create an Application Load Balancer to route traffic between the different copies of the model at the endpoint.
  4. Deploy the model to an Amazon SageMaker endpoint. Create SageMaker endpoint auto scaling policies that are based on Amazon CloudWatch metrics to adjust the number of instances dynamically.
Correct answer: D
Question 2
An ML engineer is using a training job to fine-tune a deep learning model in Amazon SageMaker Studio. The ML engineer previously used the same pre-trained model with a similar dataset. The ML engineer expects vanishing gradient, underutilized GPU, and overfitting problems.
The ML engineer needs to implement a solution to detect these issues and to react in predefined ways when the issues occur. The solution also must provide comprehensive real-time metrics during the training.
Which solution will meet these requirements with the LEAST operational overhead?
  1. Use TensorBoard to monitor the training job. Publish the findings to an Amazon Simple Notification Service (Amazon SNS) topic. Create an AWS Lambda function to consume the findings and to initiate the predefined actions.
  2. Use Amazon CloudWatch default metrics to gain insights about the training job. Use the metrics to invoke an AWS Lambda function to initiate the predefined actions.
  3. Expand the metrics in Amazon CloudWatch to include the gradients in each training step. Use the metrics to invoke an AWS Lambda function to initiate the predefined actions.
  4. Use SageMaker Debugger built-in rules to monitor the training job. Configure the rules to initiate the predefined actions.
Correct answer: D
Question 3
A company is planning to create several ML prediction models. The training data is stored in Amazon S3. The entire dataset is more than 5 ТВ in size and consists of CSV, JSON, Apache Parquet, and simple text files.
The data must be processed in several consecutive steps. The steps include complex manipulations that can take hours to finish running. Some of the processing involves natural language processing (NLP) transformations. The entire process must be automated.
Which solution will meet these requirements?
  1. Process data at each step by using Amazon SageMaker Data Wrangler. Automate the process by using Data Wrangler jobs.
  2. Use Amazon SageMaker notebooks for each data processing step. Automate the process by using Amazon EventBridge.
  3. Process data at each step by using AWS Lambda functions. Automate the process by using AWS Step Functions and Amazon EventBridge.
  4. Use Amazon SageMaker Pipelines to create a pipeline of data processing steps. Automate the pipeline by using Amazon EventBridge.
Correct answer: D
Question 4
A company has a large collection of chat recordings from customer interactions after a product release. An ML engineer needs to create an ML model to analyze the chat data. The ML engineer needs to determine the success of the product by reviewing customer sentiments about the product.
Which action should the ML engineer take to complete the evaluation in the LEAST amount of time?
  1. Use Amazon Rekognition to analyze sentiments of the chat conversations.
  2. Train a Naive Bayes classifier to analyze sentiments of the chat conversations.
  3. Use Amazon Comprehend to analyze sentiments of the chat conversations.
  4. Use random forests to classify sentiments of the chat conversations.
Correct answer: C
Question 5
A company wants to predict the success of advertising campaigns by considering the color scheme of each advertisement. An ML engineer is preparing data for a neural network model. The dataset includes color information as categorical data.
Which technique for feature engineering should the ML engineer use for the model?
  1. Apply label encoding to the color categories. Automatically assign each color a unique integer.
  2. Implement padding to ensure that all color feature vectors have the same length.
  3. Perform dimensionality reduction on the color categories.
  4. One-hot encode the color categories to transform the color scheme feature into a binary matrix.
Correct answer: D
Question 6
An ML engineer has trained a neural network by using stochastic gradient descent (SGD). The neural network performs poorly on the test set. The values for training loss and validation loss remain high and show an oscillating pattern. The values decrease for a few epochs and then increase for a few epochs before repeating the same cycle.
What should the ML engineer do to improve the training process?
  1. Introduce early stopping.
  2. Increase the size of the test set.
  3. Increase the learning rate.
  4. Decrease the learning rate.
Correct answer: D
Question 7
Case study -
An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.
The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.
After the data is aggregated, the ML engineer must implement a solution to automatically detect anomalies in the data and to visualize the result.
Which solution will meet these requirements?
  1. Use Amazon Athena to automatically detect the anomalies and to visualize the result.
  2. Use Amazon Redshift Spectrum to automatically detect the anomalies. Use Amazon QuickSight to visualize the result.
  3. Use Amazon SageMaker Data Wrangler to automatically detect the anomalies and to visualize the result.
  4. Use AWS Batch to automatically detect the anomalies. Use Amazon QuickSight to visualize the result.
Correct answer: C
Question 8
Case Study -
A company is building a web-based AI application by using Amazon SageMaker. The application will provide the following capabilities and features: ML experimentation, training, a central model registry, model deployment, and model monitoring.
The application must ensure secure and isolated use of training data during the ML lifecycle. The training data is stored in Amazon S3.
The company is experimenting with consecutive training jobs.
How can the company MINIMIZE infrastructure startup times for these jobs?
  1. Use Managed Spot Training.
  2. Use SageMaker managed warm pools.
  3. Use SageMaker Training Compiler.
  4. Use the SageMaker distributed data parallelism (SMDDP) library.
Correct answer: B
Question 9
A company that has hundreds of data scientists is using Amazon SageMaker to create ML models. The models are in model groups in the SageMaker Model Registry.
The data scientists are grouped into three categories: computer vision, natural language processing (NLP), and speech recognition. An ML engineer needs to implement a solution to organize the existing models into these groups to improve model discoverability at scale. The solution must not affect the integrity of the model artifacts and their existing groupings.
Which solution will meet these requirements?
  1. Create a custom tag for each of the three categories. Add the tags to the model packages in the SageMaker Model Registry.
  2. Create a model group for each category. Move the existing models into these category model groups.
  3. Use SageMaker ML Lineage Tracking to automatically identify and tag which model groups should contain the models.
  4. Create a Model Registry collection for each of the three categories. Move the existing model groups into the collections.
Correct answer: D
Question 10
A company is using Amazon SageMaker to develop ML models. The company stores sensitive training data in an Amazon S3 bucket. The model training must have network isolation from the internet.
Which solution will meet this requirement?
  1. Run the SageMaker training jobs in private subnets. Create a NAT gateway. Route traffic for training through the NAT gateway.
  2. Run the SageMaker training jobs in private subnets. Create an S3 gateway VPC endpoint. Route traffic for training through the S3 gateway VPC endpoint.
  3. Run the SageMaker training jobs in public subnets that have an attached security group. In the security group, use inbound rules to limit traffic from the internet. Encrypt SageMaker instance storage by using server-side encryption with AWS KMS keys (SSE-KMS).
  4. Encrypt traffic to Amazon S3 by using a bucket policy that includes a value of True for the aws:SecureTransport condition key. Use default at-rest encryption for Amazon S3. Encrypt SageMaker instance storage by using server-side encryption with AWS KMS keys (SSE-KMS).
Correct answer: B
HOW TO OPEN VCE FILES

Use VCE Exam Simulator to open VCE files
Avanaset

HOW TO OPEN VCEX FILES

Use ProfExam Simulator to open VCEX files
ProfExam Screen

ProfExam
ProfExam at a 20% markdown

You have the opportunity to purchase ProfExam at a 20% reduced price

Get Now!